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Coding
Student: Philip Tovstogan Advisor: Prof. Hsu-Feng Hsiao

Department of Electrical Engineering and Computer Science

National Chiao Tung University

Abstract

Video streaming over error-prone channels is a subject to a packet loss, which impacts
video quality on a receiver side. Ways of dealing with packet loss include feedback and
retransmission of lost packets, what is not applicable for streaming environment that may
have no feedback channel (cellularnefworks). Another way to protect data is channel
coding, which adds some.redundant data to a stream-to guarantee that receiver can
decode all data, even if something is lost.Fountain codes, particularly LT codes are one
of frequently used channel coding mechanisms; therefore we will focus on them.

High efficiency video coding (HEVC;-H:265) is latest standard in video coding, and
it has property of unequal importance of the video data. Reference (I) frame errors
will propagate over several frames forward, while errors in non-reference frames (P, B)
will be mostly localized near that frame. By using unequal error protection (UEP)
mechanism, packet loss can be further reduced for more important bits (MIB) at the
expense of less important ones (LIB), thus increasing quality of transmitted video. The
challenge of choosing optimal trade-off between MIB and LIB layers is an optimization
problem with set of challenges on its own.

In this paper we focus on Layer-Aligned Multi-Priority Rateless Codes (LMRC) -
channel coding scheme that utilizes UEP and coding sections overlapping that yields
better performance comparing to pure LT codes. As a result, we design a system that
dynamically chooses optimal channel coding parameters depending on the video content
and channel condition. For this purpose we develop a model that allows estimation of
expected video degradation of a transmitted video with good accuracy. By minimizing

degradation we are able to calculate optimal parameters for a system.
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Chapter 1

Introduction

HEVC standard [1] is the latest video standard-adopted in 2013, successor to H.264.
Video streaming is slowly transitioning to this new standard, but the question of protect-
ing data sent over the error-prone networks remains the same.

Let us consider the flowof video streaming scenario.©We have raw video being gener-
ated by camera or screen capture that is encoded into HEVC stream or using any other
codec. For the scope of this paper we-are only discussing HEVC, but some concepts
described in this paper can be applied to other codecs.

So compressed video stream is supposed to be sent over the network. It consists of
Network Abstraction Layer (NAL) units which usually contain either one video frame or
video slice worth of information; or some additional information needed to successfully
decode video. Size of NAL packets can vary significantly, but eventually all of them
are split into transport-level packets before being sent over the network. So if there is
some event in the network that can lead to loss of the packets, it is going to happen
on the transport level. Size of packets is usually dictated by network’s MTU (maximum
transmission unit). For example, in Ethernet networks MTU is equal to 1500 bytes, while
for WLAN networks it can be as large as 8KB.

If we transmit video straight after encoding, some packets will be lost what will lead to
artifacts on the receiver side after decoding and error concealment that is usually part of
decoder. TCP layer has retransmission mechanism, but timing might already be too late if

this packet was part of the frame that was already shown on the receiver side; if client will



actually wait for retransmitted packets, waiting for retransmission will introduce pauses
and stuttering in the video playback reducing stream quality.

Usually various channel coding techniques are applied to video before it being sent over
the network. The main goal is to add redundant data to raise probability of successfully
decoding video stream on the client side with minimal overhead.

One of the most popular and efficient channel codes are Reed-Solomon Codes
[2], but they have drawback of having complex encoding and decoding algorithms what
makes them not very suitable for video streaming scenario. Another set of codes is called
Fountain Codes or Rateless Erasure codes [3]. First practical implementation of
them are LT codes [4]. Subsequently, Raptor codes [5] and Online codes [6] were
also introduced. Currently channel coding area“is rich with multiple versions of many
coding schemes and new papers are-continuously being published.

Most of fountain codes provide equal error protection (EEP) to all of the data. However
video data has different impertance depending on-the role of the frame. In HEVC standard
(including preceding versions) there are reference frames - frames that are encoded using
internal spatial redundancy, and frames that are referencing other ones (taking advantage
of temporal redundancy with other frames). If reference frame is lost, then all frames
that are referencing it will have artifacts present; however if frame that has no references
to it is lost - artifacts will only be present in that particular frame. So naturally reference
frames need to be protected stronger even at possible expense of other frames. This
concept is called unequal error protection (UEP) and was introduced to LT codes by
several papers. Most notable of them include Expanding Window Fountain Codes
[7], Sliding Window Raptor codes [8] and others [9], [10], [11], [12], [13].

This paper is continuation of work on class of rateless erasure codes called Layer-
Aligned Multi-Priority Rateless Codes [14]. Original paper had introduced this
class of codes with their practical applications to SVC extension of H.264 standard [15].
Moreover, accurate prediction model to calculate loss probability of individual coded
packets belonging to each importance layer was proposed.

In this paper we will introduce a system that will allow to choose optimal channel



coding parameters to maximize transmitted video quality. In contrast to [14] we are
focusing on HEVC standard. Two major contributions of this paper include model that
can be used to estimate quality degradation of HEVC video after transmission through the
error-prone channel and system that uses above-mentioned model to carefully choose set
of parameters for channel coding scheme to minimize quality degradation of transmitted
video.

The rest of the paper is organized in the following structure: in chapter 2 we present
background for the research, go through related work from literature in chapter 3, present
our method in chapter 4, and in chapter 5 we provide experimental results and comparison

to other models with conclusion stated in' chapter 6.



Chapter 2

Background

2.1 LT Codes

LT codes [4] were introduced as channel coding method that can generate potentially
limitless number of coded symbols with relatively simple encoding and decoding process.
Imagine you have section of data.that you want to encode. First it is split into N message
symbols/blocks (MS/MB) of same size. - Then number of coded symbols/blocks (CS/CB)

can be generated from set of MBs according to encoding algorithm:

1. Pick degree d according to degree distribution function Q(d)
2. Uniformly choose d message symbols to be encoded
3. Apply XOR operation to all of them and you will get data of coded symbol

4. Repeat previous steps until you have generated N’ coded symbols

Most important things that affect performance are degree distribution function €2(d)
and amount of coded symbols N’. Overhead e is defined the following way:
N/

e=——1

N

Easiest decoding algorithm that can run in linear time is called belief-propagation

(BP) decoding that is described below:



1. After receiving a coding block: if it’s degree is not 1, put it into buffer

2. If it’s degree is 1 we have just recovered one message symbol. Go through all coded
symbols in the buffer, if any of those has this message symbol inside, XOR it with
MB effectively removing it from CB data. If any of CBs from buffer were reduced
to degree 1, treat them as newly received symbol and repeat all of the steps with
it being a received MB. When there are no more CBs that can have their degree

reduced in this way, put original MB to Message Queuing Area (MQA)

3. If all messages have been recovered, finish the decoding process. If there are no

more input symbols and there are still unrecovered message symbols, report failure.

Decoder needs to know which MBs are encoded in each CB, so this information should
either be passed via the network, or pseudo-random number generators should be synced
on both receiver and transmitter sides.

There are several papersdedicated to the search for an optimal degree distribution. In
the original paper [4] Ideal Soliton.and Robust Soliton distributions were proposed.

Ideal soliton distribution is described by the following probability mass function:

. ifk=1
N
p(k) = (2.1)

For robust soliton distribution extra set of parameters are introduced. Let ¢ be al-
lowable loss probability for message symbol and M to be location of another spike in the

probability distribution. Define R = N/M.

(

1 e -
A fi=1...M -1

Hi)={ M iy (2.2

0 ifi=M+1...N

t(7) is summed with p(k) and then re-normalised to produce robust soliton distribution.



Figure 2.1: IPP..P GOP structure

Figure 2:2: IBB..B/GOP structure

As number of message symbols'in one section will increase, required overhead that will
yield same MB loss probability will decrease.” Thus, higher amount of message symbols

gives better performance.

2.2 HEVC standard

HEVC is a video standard, it was ratified on April 2013 and is essentially a successor
to H.264. Each frame is labeled as either I, P or B frame according to GOP (Group of
Pictures) structure. I frames are intra-coded, in other words, only spatial redundancy
is taken advantage of, no other frames are referenced. P or B frames usually reference
other frames, so because of temporal redundancy being used for coding, their size is
smaller, however any errors in the reference frames will propagate over all P an B frames
referencing them. P stands for predictive frame and B for bi-predictive frame, and that
what their roles were usually in H.264 standard. However with introduction of HEVC
these restrictions are relaxed and you can find P frames referencing more than one frame.

In HEVC coding referencing pattern of frames is defined by GOP structure. One of
simplest GOP structures is IPP..P. First frame of GOP is labeled I and all other frames
are P frames, each one referencing previous one (see fig. 2.1). In case of any of P frames

is corrupted, artifacts will propagate until the end of GOP.
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Figure 2.3: H-B GOP structure of size 4

Another simple GOP structure is IBB..B. It works exactly like IPP..P, however frames
following I frame are B, and each of them is referencing I frame in the beginning of this
and next GOP (see fig. 2.2). It has smaller bitrate because of bi-prediction, also if any
of B frames is lost, it doesn’t«affect other frames. If any of I frames is corrupted, it will
lead to artifacts or undecodability of-all neighboring B frames both from left and right.

The most common struc¢ture used in HEVC is called Hierarchical-B (fig. 2.3). First,
I frame is not inserted in the beginning of each-GOP, .but only once every N,.s frames.
This period is also called intra-refresh period. JInstead, in the beginning of each GOP
(except first) there is a P frame referencing starting frame of previous GOP. Inside of
the GOP, which size is restricted to be an integer that is a power of 2 (2, 4, 8, 16, etc.)
there are B frames that are referencing each other resembling hierarchical structure. For
example, for GOP size of 4, 2nd B frame is referencing current and next GOPs starting
P frame; 1st B - current starting and middle (2nd) B; and 3rd B - middle (2nd) B and
starting P of next GOP. If GOP size is larger, hierarchical structure continues in similar
way down. This structure combines strengths of both P and B frame structures in flexible
and controllable way.

Though HEVC decoders can try to conceal errors if some part of NAL unit is corrupted
or lost, it will usually introduce noticeable spatial distortion. Thus, for this paper we will
focus on temporal distortion and use concealment strategy of displaying latest successfully
decoded frame. In addition, temporal distortion usually deteriorates subjective quality

less, because human eyes tend to notice spatial distortion more.



Chapter 3

Related Work

3.1 Layer-Aligned Multi-Priority Rateless Codes

(LMRC)

These codes were introduced in [14] and two most important characteristics they
possess is sliding window (SW).method and unequal error protection (UEP).

Let us briefly go over the encoding and decoding process to introduce major differences
between LMRC and LT codes.

First, assume that data in the section is separated by importance into N layers, and
layer sequence repeats each section (see fig. 3.1). After first section was encoded, window

moves by the length of the 1st layer thus now including 1st layer of second section. Then

Wy

Section 1

Wi |

W13 Lis |
Ll: ‘ Ll3 |
Lys |

Wi | Ly ‘ Ly ‘

~ N windows

b |
"N
Lis | Ly |
o |

Figure 3.1: Sliding window (LMRC codes)



window moves by length of layer 2 and so forth. This method introduces possibility of
cascade decoding, where packet from 1st layer of 1st section can indirectly help to decode
packet from 3rd layer of 2nd section, in case they both are coded in some CB with message
symbol from 1st layer of 2nd section. Another positive thing is concept of virtual section
size - effective section size used for decoding is actually larger than size of one section.

UEP is achieved by slight modification of encoding algorithm. It is described below:

1. Pick degree d according to degree probability distribution Q(d)

2. Choose d MBs from N different layers. The probability of choosing a certain MB
from video layer j is p;, where 1 < j < N. If there are n; MBs from layer j in one

section, then probabilitiessshould be normalized: Zjvzl nip; =1

3. The coded symbol is formed astesult of XOR operation between the chosen message

symbols

Another notion for defining importance of each layer includes weighting factors w;. In
this case probability to pick each individual message symbol is calculated in the following

way:

Y
N
Zi:1 n;W;

Decoding process is the same as for LT codes, the information about mapping of

p; = (3.1)

message symbols to coded symbols still needs to be passed. Layers with higher weight
will be chosen as source for message symbols more often, thus increasing probability of
their successful decoding.

Main contribution of [14] is analytical model that was derived using and-or trees,
introduced in [16] by M. Luby et. al. Process of its derivation is similar to original one
for simple LT codes, we will not go through it in this overview. For complete derivation
see [14] and [16]. The final result is the iterative formula that can be used to calculate

probabilities of message symbol loss for each layer:

pij = e PekpiN(-1ta) (3.2)
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Figure 3.2: Performance.of LMRC

pi; is loss probability for message symbol from layer j in and-or tree with height 27,
Yw = 1 4+ €, k is number of message symbols in one section, p; is the above-mentioned
probability to pick individual message symbols from layer j, N is number of layers and
¢; is probability for an and-node at level ¢ to be.evaluated as 0 and it can be calculated

using following formula:

k-1
qi = Z(AdJrl( Z wdp(d)Va))
d=0 vd: YN | di=d
ddg
A —
Y
N
Vg=1- H(l — Pi-1,5)"
j=1

Ay is probability for an edge to connect to and-node of degree d, wdp(d) is probability
for a coded block with layer vector d to exist. In other words, wdp(d) is probability
to select d; message blocks layer ¢ for all 1 < ¢ < N. It can be calculated using the
multivariate version of Wallenius non-central hyper-geometric distribution [17]. ¥4 is a
probability for an and-node with fixed vector d to be evaluated as 0.

Performance evaluation of LMRC (see fig. 3.2) is performed using video of small

10
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Figure 3.3: EWF codes encoding

resolution (325x288) what results in very small packet size that is not applicable to real
world situations. Also choice‘of optimal weighting factor for MIB layer is performed using
exhaustive search. In this paper we will use ' more appropriate high resolution HEVC-
encoded videos and our method will provide faster search for a optimal weighting factor

value.

3.2 Expanding Window Fountain codes

Expanding Window Fountain (EWF) codes [7] use expanding windows to cover
the section with standard LT encoding performed inside windows. Before generating CB,
one of expanding windows is selected, and all MBs in it are used for CB generation. Thus,
MBs in the start of the section will be present in more CBs than MBs located in the end
of the section.

Structure used in EWF codes has N layers, all of them start in the beginning of the
section, all of MBs of layer ¢ are also contained in layer ¢ 4+ 1, and layer N covers the
whole section (see fig. 3.3).

Also define probabilities to choose each layer: p;, Zfil p; = 1. LT encoding process
is altered in the following way: after we chose degree for CB, layer is chosen according to
layer probability distribution. Then, all MBs from the layer are uniformly picked to be
included in CB.

11



Main difference between LMRC and EWF codes is that in EWF encoding algorithm
you make a decision about layer once every CB. For LMRC you decide on the layer each
time you pick MB, so all CBs are more uniform in this regard when in each CBs from
EWF codes all MBs are belonging to one of importance layers.

Moreover because of nature of expanding windows, layers in EWF codes are always
placed from most important to least important order. In LMRC codes importance is
assigned using weighting factors, so if needed, importance of first layer can be lower than
second layer. This property makes LMRC codes more flexible.

Because of huge similarity of LMRC and EWF codes, and flexibility of our system we
can replace LMRC module with EWFE module.and compare their performance in chapter

D.

3.3 Randomized Expanding Reed-Solomon (RE-RS)

Codes

These codes are introduced in [18]. "They have similar applications with this paper,
however their approach uses modified version of Reed-Solomon codes to provide efficient
encoding of video stream. We will use this paper for performance comparison in chapter
5.

Each GOP of the video is encoded in one section and there is no overlapping. Each
frame is split into message symbols with constant size typically containing one video
slice. Traditional approach of RS coding is to generate coded symbols for each frame
individually and transmit them. Method proposed in this paper involves two key concepts:
randomization and expanding.

Assume that there are K message symbols, N — K coded symbols are going to be
generated. Moreover, before encoding process starts, 2™ — 1 — N padding symbols filled

with zeros are added to create full-length RS code (m is number of bits in the symbol).

N-—K

Overhead g is calculated in the following way: pu = =+

. Downside of encoding each

frame individually is that number of MBs per frame is pretty low for code to have good

12
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Figure 3.4: RE-RS scheme

performance, in addition CBs from one frame provide no information that can be used to
decode other frames.
To keep overhead more or less constant over all frames, number of CBs to generate is

calculated using following function (S(k) is number of MBs in frame with index k):

sy ifi=1
R(i) = | | (3.3)
(1> ey SR)] = 2252y R(E) ifi>1

First key concept is to use MBs from previous frames for CB generation (see fig. 3.4).
Thus, if there was error in one of earlier frames which is currently propagating, if we will
receive enough CBs from next frames, we will be able to successfully decode that previous
frame, and though it was already played back, we can stop error propagation by using
updated pixel buffer values that is used in reference decoding.

To improve the performance of RS code, before encoding all MBs are shuffled with
zero-padding MBs. It increases probability of having full-rank parity matrix at the time
of decoding process. Still, mapping of the shuffle performed needs to be the same at both
encoder and decoder sites, thus should be either transmitted over network or synchronised.

Full encoding process looks like this:

1. RS packets are allocated to each frame using equation 3.3

2. Video packets of current and previous frames are collected, padding packets are

13



generated if number of packets is less then 2™ — 1 — R(37)
3. All 2™ — 1 — R(%) packets are randomly reordered.
4. R(i) CBs are generated
5. Video packets of current frame and generated CBs are transmitted to receiver.
6. Repeat previous steps for all frames in GOP
Decoding process for RE-RS codes is described below:

1. After receiving packets for current frame they are reordered together with zero-

padding MBs using the same map-as-at-the encoder site

2. By multiplying reordered video packets with parity-check matrix, parity-check equa-

tions are generated

3. Parity-check equations‘of current frame are combined with equations from previous

ones

4. If system of equations can be solved and it will allow successful decoding of previ-
ously lost frames, it is done and reference buffer is updated if necessary. If not, then
current frame will be decoded and any artifacts if present, will be attempted to be

concealed.
5. Repeat previous steps for the next frame until end of GOP

Regarding experimental results, optimal value of overhead p and its relation with
packet loss rate was found using exhaustive search (= 4pj,ss). For their simulations
they used packet size of 400 bytes and m = 10.

One of advantages of RE-RS codes is that there is no section-based delay in streaming,
i.e. section doesn’t need to be completely encoded before being sent over the network.
However encoding and decoding process time can grow near the end of the section because
of large amount of MBs used and nature of RS encoding/decoding. Also low number of

MBs in the beginning of GOP limits potential performance of RE-RS codes.

14
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Figure 3.5: Performance of RE-RS codes

3.4 Video Distortion Estimation

In [19] a model to estimate end-to-end-video distortion was proposed. It considers
advanced error concealment strategy used by decoder and its accuracy is good enough
for its purposes. However because it covers both encoding and error concealment process
after transmission, it cannot be used in the scenario that we are considering with channel
coding included. Also it doesn’t take possible UEP into account, so that’s another point
why it is not applicable to our scenario.

Thus we need to develop model that will allow us to predict video degradation after it
being channel coded, transmitted and its errors concealed. We are using PFC (previous

frame copy) error concealment method.
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Chapter 4

Theory

Our goal is to be able to estimate video quality degradation after it being encoded
with LMRC, transmitted over the network, decoded and its errors been concealed.

The generated video stream is first split into video-segments. Segment’s size is de-
termined by how often thevideo content significantly ehanges (e.g. scene change) and
channel condition changes. Once per each video segment it’s data is analysed to provide
information to our system, so longer it is; less computations are required. But it shouldn’t
be too long, or the estimation accuracy of the system will suffer, if video content and chan-
nel condition varies too much. Typically, video segment is of the same size as channel
coding section, however it can be any integer multiple of it.

We introduce 3 main modules of our system with different functionality and responsi-

bility (see fig. 4.1).

(once per video segment)

packets per

frame learning data
statistics
Puie, PLip . . Pr.Pp.Ps | hahilist Hsaqs[i] e AQ
Aggregated
Weighting
factor w {optimization)

Figure 4.1: System Architecture
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Transitive model uses video frame size statistics to provide means to calculate loss
probability for each type of frame depending on packet loss rate after channel coding.
Video data needs to be processed only once to gather statistics about frame size, and if
it should not change much in the next segment, data from previous segment can be kept.

Probabilistic model is responsible for calculating estimated frequency of encoun-
tering sequences of undecodable frames depending on the GOP structure used and each
loss probability for each frame type. This information is used by degradation model
to estimate quality degradation of the decoded and error-concealed video.

All three models combined can be abstracted as aggregated model that analyses
video segment and can estimate video dégradation depending on weighting factor used in
LMRC and packet loss rate (channel condition). Thus it is used to solve the optimization
problem of choosing weighting factor-that will minimize video quality degradation or in
other words maximize received video quality.

So, the complete system-flow includes splitting video into segments, packet loss rate
estimation from the network; then usage of the aggregated model in conjunction with
LMRC model to choose optimal weighting factor and finally applying LMRC channel
coding to the video and transmitting it over the network. Ideally, for each video seg-
ment the whole process should be repeated, unless video content and channel condition
doesn’t change. Moreover, reduced complexity estimation (introduced in section 4.3.2)
can be used to reduce amount of calculations done per segment without significant loss

of performance.

4.1 Transitive Model

We will assume that if any packet from the frame is lost, then the whole frame is
undecodable. This assumption will allow us to disregard any spatial distortions that may
be present because of partial decoding of the frame, and focus on the temporal distortions.
In other words we are considering worst-case scenario when the whole frame cannot be

decoded.

Because packet loss occurs on the network layer, which is abstracted from the appli-
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cation layer, and we are interested in frame loss rate, we need to devise a schema that
will allow us to make this conversion with good accuracy. That is the goal of transitive
model.

Packet loss rate used by transitive model is output of the LMRC model which uses
coded packet loss rate as its input. So naturally we require loss probability of the coded
packets first. In the systems without feedback channel (e.g. mobile networks) value for
packet loss rate can be estimated from uplink channel (from device to base station) or
using channel quality measure (CQI for WiMAX and LTE networks).

Let us assume that size of the frames in the encoded video is changing with more or
less constant variance, so most of the frames of same type can be guaranteed to be less
than certain size (i.e. all P framesare less than one size value, but of course it is different
for I frames). This viability. of this-assumption is_confirmed in the chapter 5.

Thus, the conversion is-not difficult to perform - prebability of successfully receiving
the whole frame is equal to the probability.of successfully receiving all of the packets.

Then probability of loss can be calculated as follows:

p= 1— (1 _pmsg)s

Where S is the maximum estimated size of the frame divided by network packet size,
which means how many network packets are there in the frame. Here we are overestimat-
ing actual number of packets per frame, thus because actual probabilities will be less, we
are using worst-case scenario for video-quality estimation.

Now we introduce frame loss probabilities for each different frame type:

pr = 1— (1 - pmsg,I)SI (41)
pp = 1— (1 - pmsg,P)SP (42)
PB = 1— (1 - pmsg,B>SB (43)

For example for the video sequence named Park Scene with resolution of 1080p after
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analysing frame sizes, we get that I frame is less than 75KB on average, P - 3.0KB, B -
1.5KB. So, for the typical network packet size or MTU of 1.5KB, we can calculate the

values of S7, Sp and Sg:

Sr=50,Sp=2,5=1

Depending of importance layer assignment to different frame types message symbol
recovery probability will be different. So for example, if I frame packets are assigned to
MIB layers, and others to LIB, then py,sq.1 = PrmiB, Pmsg, P = Pmsg,B = DLIB-

Due to nature of channel coding there will definitely some padding overhead (frame
will occupy integer amount of network-packets): We can calculate it assuming uniform

distribution of each packet padding overhead.

¢ = packetsize/2 x fps/bitrate (4.4)

This overhead is inevitable for.any LT-based channel codes and it should be accounted
for in the experiments. Estimated wvalue-of padding using equation 4.4 overhead is very
accurate comparing to actual value of overhead from channel encoded video (average
relative error = 1.01E-3).

Packet loss rate that is used by transitive model should be obtained via channel coding
model (in our case, LMRC) and thus loss probabilities of each frame type can be used by

probabilistic model.
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4.2 Probabilistic Model

4.2.1 Definitions

Let’s define the binary indicator function [¢,qmes that tells if a frame is decodable or

not in the video stream segment with length N:

1 if frame n is decodable
Iframes [n] = (45)
0 if frame n is not decodable

The frame may be undecodable due to loss of it’s data when it was sent through a
channel, or if it references anothér undecodable frame.

The video is divided into GOPs of equal and fixed length (denoted by G) and we will
assume that video slice length N is multiple of G (Ng.= N/G is the number of GOPs
in it). We will also transform function I ames|n] into function that takes GOP index ng

and frame index g within that GOP-+ Taop frames|[nés gl

[GOP,fTames[nG>g] = Iframes[GnG + g]a 0 S ng < NG; 0 S g < G (46)

Icop frames gives us information about sequences of 0’s and their length. We will
name sequence of consecutive 0’s in I ¢qmes & 0-seq for shortness of notation. 0-seq index
identifies it in the video segment and starts with 1. Let’s define Lg.,s[i] as a function that
takes 0-seq index as input and outputs length of corresponding 0-seq, and Lgop,seqs[nc, 7]
a function that takes GOP index and 0-seq index inside of GOP. Important thing is that
ng indicates the index of GOP, where the sequence has ended.

Notation-wise if we don’t explicitly indicate value for index of the function, then we
are interested in all values of it. For example IGop frames[0, 3] = 0 is a scalar and indicates
decodability of frame 3 in GOP 0. If we are using index g instead of its value in notation,
it means that we are interested in all its values - Icop, frames|0, g = {1100} is an array of
IGop frames|0, g] for 0 < g < G. Similarly Icop frames[na, 9] = {{1100}, {1110} } shows all

values for I6op, frames/fa, 9], 0 < ng < Ng, 0 < g < G.
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Now we will show how to calculate values for introduced functions on the example.

Assume that we have GOP structure IPPP, G =4, N = 16:

I frames|n] = {1100111000001100}
IGOP,frames[nG7 g] = {{11@}7 {1110}a {OOOO}, {]—1@}}
Lseqs[i] = {27 5a 2}

LGOP,seqs [ng, Z] = {{2}7 {}7 {5}7 {2}}

Now we count number of occurrences of each 0-seq length in each GOP using Laop,seqs
and construct new function Hgopsegs by lassigning to Heop,seqs[a, I] the number of oc-
currences of 0-seqs with length 4.i0°" Lo pseqs[nG¢]- Continuing with our example it means
that Hgopseqs[0,2] = 1 because there is enly one 0-seq.with length 2 in Lgopseqs[0, 1] =
{2}, Hgopseqs|0, 3] = 0 because there are no 0-seqs withlength 3, and so forth. Notation-
wise, we will skip Hgop seqs|uc 0] (because-it-is-always zero, and also skip all the trailing

zeros. Thus for our example here are all values of Haop seqs:

Heopsegsnas ] = {{0,1},{},{0,0,0,0,1},{0,1}}

Similarly we construct Heys[l] which is a function that represents total number of
occurrences of length [ in Lg.qs[i| (0-seqs with length  in If,qmes). In our example 0-seqs
with length 2 show up in total 2 times in Ly, S0 Heqs[2] = 2. For all values of [ in our
example H.s[l] = {0,2,0,0,1}.

Our goal is to calculate ﬁseqs /] which is the estimation of Heys[l]. To do this we first
calculate ﬁ@,seqs [I] which is defined as average of Heop seqs[Nas I excluding GOPs where
0-seqs with length [ cannot physically end. For example, 0-seq with length 1 can belong
to any GOP, but 0-seq with length G + 1 cannot belong to (end in) first GOP - maximun
length of 0-seq from first GOP is G. More precisely, ﬁw’seqs[l} is an expectation of

Hecopseqs|ng, I] with ng being a random variable with uniform distribution over indices
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Symbol Definition
N Length of video segment
G Size of GOP
N¢ Number of GOPs in video segment
g Index of frame inside GOP
n Index of frame inside video segment
ng Index of GOP inside video segment
l Length of 0-seq
7 Index of 0-seq

Table 4.1: Symbol definitions

of GOPs where 0-seq with length [ can end ([{/G| — 1 < nf; < Ng):

Ng—1
~ 1
H=75 l| = H l 4.
GOP,seqs[ ] NG Y U/G—I — [zl/:G-l 1 GOP,seqs [nG7 ] ( 7)
ng= —

Then ﬁseqs [l] can be calculated in following manner:
Hoegall] = Na=11/GT% 1) Heop oeqsll] (4.8)

We will be taking closer look at‘several common GOP structures used: all frames are
P and in the beginning of GOP we have an I (IPP..P), all B frames with I in the beginning
(IBB..B) and most popular and used for HEVC hierarchical B structure shown in fig. 2.3
(Hierarchical-B, H-B).

Our goal is to calculate H.qs[l] and we will be using IA{W,seqs[l] as an estimation
target for IPP..P and IBB..B structures, and for H-B structure we will derive formula for
f[seqs[l] directly. Because notation of Hyp Ppseqsl] is cumbersome, we will use a shorthand
notation for it H[l] = ]:Iwﬁeqs 7).

All symbols that will be often used and were introduced in probabilistic model are

summarized in table 4.1
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4.2.2 Derivation of Flseqs[l]
IPP..P

Assume that that there is I frame at the beginning of each GOP and only P frames
in the GOP (see fig. 2.1). We want to derive H[l] for this particular case. Let us look at
particular GOP and calculate the occurrence probability of sequence of each length. We
assume that the probability of actual I frame loss is constant and equal to p; and pp for
a P frame respectively.

The only way we can have a sequence of length 1, or single frame undecodable is in
the end of GOP (Pr = pp), so it will not render other frames undecodable. Also, we
need all other frames decodable in-this GOP(Pr» = (1 — p;)(1 — pp)9~2). We don’t
care about previous GOP, but we need .to know that the I frame in the next GOP is
decodable (Pr = (1 —py)) otherwise there will be more consecutive zeros. By multiplying

probabilities of these independent eventswe can get thewvalue for H [1]:

A~

H[) = (=p)>@=pp)° *pp

We can extend this concept to get occurrence probabilities of sequence of length [,
where 1 <[ < G — 1. To get it we need first I frame and next G — 1 — [ P frames not
lost, next (G — [)th P frame lost, and we don’t care about next [ — 1 P frames because

anyway there are undecodable due to them referencing (G — [)th P frame:

~

Hl =1 -p)* 1 —pp)“ ' pp,1<I<G -1

For convenience, let us define H [0] as probability of no frames lost in particular GOP

including the I frame of next GOP:
H[0) = (1 =p)*(1 —pp)°™"

To get the sequence of length exactly G in particular GOP we have two cases: our

GOP either is or isn’t the first GOP of the segment. In the first case we need to have
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its I frame lost (Pr = py) and I frame of next GOP not lost (Pr = 1 — p;). Probability
of this case occurring is Pr = 1/Ng. For the second case except for the things already
mentioned, we also need all frames from previous GOP to be decodable (Pr = H|0]).
Because H [0] includes probability of decodability of this GOP’s I frame, which is not the
case, we transform the meaning of term (1 — py) from H|0] to represent the decodability
of next GOP’s I frame and now everything is taken into account. Adding probabilities

yields following equation:

We can use recursive relation to-derive values.of H [l] for values of | > G (except
multiples of G). To obtain the sequence of length [ we need the sequence of length | — G
from previous GOP, I frame of this GOP lost (Pr =p;).and I frame of GOP after it not

lost, (it is already counted in H[l — G} -as frame of this-GOP), so:

A

H{l=pH[L—=G]I> G

Using the same logic as for derivation of H [G] we can calculate probabilities for mul-
tiples of G. For k I frames lost first case is when they are in the beginning of segment, so
we don’t need to account for H[0], second case is all next GOPs. The only thing is that
the number of possible GOPs to have 0-seq will reduce as [ increases.

1 A

HIkG] = ( (1—=pr)+(1— m)H[O])P]f

Ng—k+1

Now we can unwrap the recursive relation and get the closed-form formula for H UE

1 — (755 + (1 - 555)1 = p)(1 = pp) (1 = pr)pf©  if I mod G =0 o)

(1 _ p1)2(1 _ pP)G—l—l mod pr/GJpP else
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IBB..B

Now let us consider similar structure, but with B frames instead of P frames (proba-
bility of B frame loss is denoted as pg) (see fig. 2.2).

First let’s again consider occurrence probability of the sequence of length 1. We
definitely need both I frames at the beginning of this GOP and next GOP not to be lost
(Pr = (1 —ps)?), or the sequence will be covering whole GOP. Then the actual sequence
can only be got by loss of single B frame (Pr = pg) while 2 neighboring frames are
decodable. They both can be B frames (Pr = (1 — pg)?) and there are G — 3 positions
for this to be the case; or one of them can be I frame, another B (Pr = 1 —pg), and there

are only 2 way for this to happen.c Combining everything, we get H [1]:

~

H[1] = (& = p1)*ps((G =3)(L=ps)*+ 2(1 — ps))

Extending this way of thinking to values.of.l <'G — 2 we still have two cases of
sequence being surrounded by B-frames, or being in the beginning or the end of GOP.
Loss probability of frames in sequence is now pl, number of different positions for first

case is now G — 2 — [, other values stay the same:

A

H[l) = (1= p1)*ps((G—=2-1)(1 —pp)* +2(1 —pp)),l <G -2

Simplifying the equation we get:

~

H[l) = (1= pr)’pp(1 = pp)((G =2 = D)(1 = pp) +2),l < G~ 2

To get the sequence of length G — 1 we need to have all B frames in GOP lost, and
both I frames not lost:

A

H[G—1] = (1—p;)°pG"

For higher values of [ we need I frame to be lost. But as soon as it is the case, it affects
all B frames to both left and right of it and length of sequence becomes 2G — 1., unless it

is in the beginning of video slice (I = G). So actually B frames loss don’t influence values
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of H[I], 1 > G —1. Tt is solely determined by number of I frames lost in consecutive GOPs
and their position. If their number is k£, then length of sequence is Gk+ G —1 if it doesn’t

include first GOP (Pr = Ngﬁgil) and Gk if it includes (Pr =

No—rr1)» brobability of

loss is (1 — pr)?pk. Occurrence of sequences of other lengths is 0.

Putting everything together yields the complete model for H[n]:

(1—p)?p(1 —p)((G—=2—-1D(1—pp)+2) if1<I<G-2
(1 —=pr)*p5 " ifl=G—1
Hl] = § ek (1 - pp)2ph ifl=Gk+G—1,1<k<Ng
m(l—pmp’; if l=Gk,1 <k<Ng
0 else

\

(4.10)

Hierarchical-B

Now we will derive expression for ]:Iseqs /] for-a Hierarchical-B structure (see fig. 2.3).
GOP size should be a power of 2, and we will define intra-period length as N,.s. Intra-
period is a period of insertion of I frame in the beginning of GOP. We will assume that
N,er is multiple of G and N is a multiple of N,.s. Also let’s define Ng ,cf = Nyep/G that
represents number of GOPs in intra-period.

Let us first examine the case of 0-seqs because of B frame losses. We will assume that
closest P frames on the edges of GOP are decodable. Define T' = log, G as a maximum
depth of B layers. For example, if G = 2, it means that there is maximum depth of 1
layer consisting of one B frame. If G = 8, then there are 3 layers of B frames beneath
P frames. Possible [ values in this case are limited to 1, 3, 7, in general 2 — 1 frames
undecodable, where 1 < ¢ <T.

Because probabilities of P frames to be undecodable are different for each GOP (like P
frames in IPP..P structure), to get expected number of 0-seqs with length 1 < <27 —1
we need to add values from each GOP (they will be different). Thus we need to calculate

probabilities of P frames losses. Define P, p[ng| as a probability of receiving I frame and
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Figure 4.2: P frame indices in H-B

all P frames till ng-th included (index starting with 0 for I-frame, see fig. 4.2).

Puip[ng] = (1 —pr)(1 —pp)"¢,0 < ng < N ref

Because Py p[ng] will be used ascan indicator that both non-B frames on the edges
of GOP are received, we also needto introduce value' P, p[Ng ref| that includes receiving

probability of next GOP’s Lframe that is required for the last GOP in segment.

PallP[NG,'ref] = (1 _p[)2(1 —pP)NG,ref

Now we can break down probability-ef-having 0-seq of length [ in ng-th GOP, and

sum them over all GOPs (don’t forget that there are N/N,.; intra-periods):

N
Pa”p[nG + 1]PB[Z],O <l< @G
Nref

. N
Hseqs[l] - N ;

}AIG’OP,seqs [nG7 l] =

Ne—1

Z Pauiplng + 1] Pgll] =

ng=0

—pI)PB[l] (411)

N 1-— (1 — pp)NG'Tef
= 1—pr)(1—
(=P (1= pr)(—E

Where Pgll] is a probability of getting 0-seq with length [ due to B frame loss in a
GOP. It can be easily seen that if B frame in layer ¢ from bottom (7" —t from top) is lost,

when depth is T', it will lead to loss of 2t — 1 consecutive B frames.
Ppl2t —1] =2"""(1 — pp)

Also it is easy to calculate number of B frames on layer ¢ from top: there are 2°
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different places where B frame can be lost.

Substituting expression for Pg[l] into equation 4.11 yields complete formula to calcu-

late ﬁseqs[l] for | < G-

A~ N 1 — (]_ _pP)NG,'r'ef
Hagll] = 57— =) (1 = pe) (1

—p)2T01 — pp) T Ypp  (4.12)

Now for the values of G < I < N,.s: as soon as we lose at least one P frame, all
P frames on right till I frame and B frames left of it till P frame will be undecodable.
Assume that first lost P frame in intra-period has index ng, then length of 0-seq will be

G(Ngyrer —ne) + G — 1 and probability will be equal to:

A

Hseqs[G<NG,ref — ng) -+ G N 1] =

(1 iy pI)PallP[TlG - 1]pP
ref
N

=N f(l = p1)°(L—pp)"e 'pp,0 < ng < N ref

f{seqs[Gk +G=1] = (T=pr)2(1 ~pp)Vers " pp,1 < k < Ngres

ref
(4.13)

And for the last part we need to consider what will happen when I frames are lost. If
we have one I frame lost with all P frames from previous intra-period and next I frame
received, length of O-seq will be N,.; + G — 1. Important point here is that in case of I
frame being lost in the beginning of the segment we cover frames lost in the end of previous
segment (otherwise it severely complicates equations). This way of thinking with slight

adjustments (number of possible positions is reduced) applies also to k I frames lost.

. N
Hseqs[Nref + G — 1] = N PallP[NG,ref]pI
ref
. N = (k—1)N,

HogslkNyes + G — 1] = L Poip [N resph (4.14)

Nref

In case if at least one P frame is lost and next I frame is also lost, it yields slightly

different equation, because we need 2 intra-periods to constrain on, which reduces number
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of possible positions among intra-periods by 1.

& N — Nre 2
Hoegs Nrey 1) = == Bl
ref
. N — kN, -
Hseqs[kNref + l] = —f]‘.,seqs[l]pllC (415)

Nref

Putting together equations 4.12, 4.13, 4.14 and 4.15 and making remaining substitu-

tions yields complete model for Hierarchical-B structure:

—(1— NG ref —
F (L= pr)(1 = pp) (Z5 225 — pp)(2(1 = pg))T s

PR
[=2t<11<t<log,G,teZ

N—(k—=1)N,.f (1

Nees — PRl = pp) "Sip}

Hoeqs[l] = l =Ntk +G~1L< k< ]Tvef,k?GZ (4.16)

N—kaNy, /. _4
S (TR (L Spp) easia Zinrp

= le +G_ 1+Nrefk27

1 S kl < NG,T6f7O S k2 < %71{;171{;2 €z
4.3 Degradation Model

4.3.1 Definitions

Let us denote by V encoded video as the sequence of frames, so V[n| represents n-
th frame in the video. Moreover, let us denote by V' concealed video. At the point in
video where we have several consecutive frames lost, we introduce degradation function
DIl, 4] which is defined as follows. Let n.s; be position of last frame that was decoded
successfully for i-th 0-seq and 7444, + 1 is the first corrupted frame Also assume that the

length of this i-th 0-seq is L;.

DIl,i] = PSNRframe(V[nast + U], V' [uast +1]), where 1 <1< L,
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In other words, D[l, ] tells us what is the value of PSNR between original video frame
and the one that was used to conceal it after [ frames lost into the i-th 0-seq. DI[1]
corresponds to first lost frame, D|2] to the second, and so forth.

We also define average degradation function as degradation, averaged over all 0-seqs,
D] = Zi:lgLi DIl i].

Our goal is to predict average degradation function, that will be used in conjunction
of probabilistic model to estimate average degradation of the video. For the remainder
of the section we assume that the concealment strategy is using the latest non-corrupted

frame in placement of corrupted ones:

V/ [nlast,i =+ l] = V[nlast,i]v 1 S l S Li>

4.3.2 Prediction of D[l]

After numerous observations it was evident -that’ all degradations in different videos
including average degradation‘can be modeled by Some function. For example, different
degradations for video sequence Cactus ean be seen on figure 4.3. They were obtained by
calculating PSNR, between starting frame and frame A frames to the right. 10 different
starting frames were chosen uniformly distributed along the whole video sequence that
provide 10 different lines.
| which is the estimation of

To predict PSNR drop pattern or D[l] we introduce

0
D[l]. We will use non-linear prediction model to calculate DI[I]:

A ae

Dll] = =55— +39 (4.17)

This prediction model is based on shape of degradation observations and compar-
ing to other models (polynomial, exponential, etc. - see fig. 4.2) achieves best fitting
performance.

To estimate parameters «, 3, v and d, which are video content dependent, we are using

machine learning on the period of video with artificial data ﬁg?, where [ corresponds to
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Figure 4.3: Degradation observations

Model R?
Proposed 0.9999
Polynomial (4th degree) (10.9901
Polynomial (3rd degree) |/0.9807

Exponential 0.8743
Laplacian 0.2321
Rayleigh 0.0753

Table 4.2: Degradation fitting performance

argument of D[], and m is index of sample for that [. Basically, what we want to do is to
get M samples for each value of D[l] up to L from video slice V' with total of N frames
in it. We assume that content variations inside the video slice are minimal, so we can use

one set of model parameters to successfully represent possible degradations.

N—-L

7 J which is equal to number of frames to jump

Let us introduce hop size h = [

when m is increased. Then we can use the following formula to gather data:

f)g;” = PSNRyame(VImh],Vimh+1)),1 <1< L0<m<M

Now we have M L samples to learn model parameters for particular video slice. So we

use machine learning to find optimal model parameters to minimize aggregated square
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Figure 4.4: Reduced complexity estimation

error:
LeMgl
arg minz Z (Dgln;) — D[l])?
a,BY A 1=0 m=0

In real-time streaming full-blown prediction isn’t usually feasible because of amount
of computations needed, so'we introduce reduced complexity prediction that can be used.
After performing fitting for'multitude of different videos and comparing parameter values,
it was evident that v and [ have less variance comparing to o and § (see table 5.4 in
chapter 5). So to reduce amount of numerical operations we can use heuristic values for
~v and f: v and (p, and then we need to estimate only two parameters. Values for
and 7y were obtained by calculating average over 6 different video sequences.

Moreover, it simplifies estimation process. For each segment only several frames from
its beginning are required to do the estimation. Essentially a system of equations needs

to be solved:

\

Where F(I) = 6;6101 is a constant for any particular [ and A(l) is a PSNR between
first and (I + 1)th frame. So, minimum number frames to successfully calculate value for

a and ( is 3 yielding system of [ = 2 equations and 2 variables. Number of equations can
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be increased and solved approximately using linear algebra giving more accurate results
(see fig. 4.4).
In case of different error concealment strategy used, degradation model should be

revised, but concept is still applicable.

4.4 Aggregated Model

Our final goal is to estimate average quality difference between original video and
degraded video as a function of weighting factor used in LMRC codes.

Degradation model allows us to estimate degradation function D[l], and probabilistic
model allows us to estimate number of 0-seqs according to their length ﬁseqs []. Assume
that we know average quality of encoded video in terms of PSNR between it and original
video Qene. Let’s take onesframe and combine Qen. (PSNR between encoded video and
original one) and Qg (PSNR between degraded video and encoded one): in worst case
noise introduced by video encoding and error concealment is added, what leads us to
following equation for a function to combine PSNR values J(Qenc, Queg)

MAX?

o2

PSNR =log,

0j = Oenc T Odeg

Q7 = J(Qene, Queg) = —210g,o(107ene/2 10 uea)

Let us introduce joint degradation function that takes care of combining PSNR from

two sources: encoding and degradation:

A

Dy[l] = J(D[1], Qenc)

Now for calculation of PSNR of degraded video we have to consider 2 classes of frames:

degraded and non-degraded. Number of degraded frames can be calculated using proba-
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bilistic model, where we know that there are Hseqs [l] 0-seqs with length of [ frames:

L
Ndeg - Z lﬁseqs[l]
=1

Using degradation model we can calculate sum of PSNR of [-length 0-seq frames I:
Zizl D s[7]. Thus by summing PSNR of all frames and dividing it by number of frames

we get average PSNR of video segment:

L l

@ = (0 Haasll) 3 D]+ (N = S a1 Qen) (4.18)

=1

By subtracting Q p from Q.. we can get quality difference AQ:

AQ = Qenc - QD N %(Qenc Z lﬁseqs[l]) |\ Z Aseqs [l] Z DJM) (419)

Using LMRC model we can calculate pyip{w) and prrp(w), transitive model allows us
to get pr(w), pp(w) and pp(w), probabilistic model gives us Hyeqs|l] With w as parameter,
and ultimately we are able to calculate Obp.

From numerous observations we can assume that Q p(w) is concave function (see fig.
5.5 in chapter 5). It makes sense, because as w increases, loss probability of MIB layer
is decreasing while for LIB layer it is increasing. Thus there should be point of trade-
off, where increase in LIB loss will overshadow gain from reduction of MIB loss, thus
decreasing PSNR.

Aggregated model in conjunction with LMRC model gives us formula that can be
used to calculate Q p as a function of p,s and w. Thus we can use it to find value of w
that maximizes its value. Due to its concavity we can use gradient descent method to
find maximum. Because of difficulty of deriving %Q p(w) we are going to use numerical

to estimate value of derivative.

approach (%QD(WO) ~ QD(WO+5();QD(wo))
After the optimal value of w is found, it is used to perform channel coding on video

stream and it is transmitted through the network.
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Chapter 5

Experimental Results

In this chapter, first we give a brief introduction of our experimental environment
including the testing datasets and the metrics we used to evaluate the accuracy. We eval-
uate accuracy of each individual model and aggregated one. Also we perform performance
comparison of our proposed method to RE-RS codes [18].

For the following experiments we are using 4 video sequences from JCT-VC provided
sequences of different classes.

For HEVC encoding we are using HM software version 16.6 with low delay profile,

base QP value of 32 if not specified otherwise.

5.1 Transitive model

One of the assumptions that we made for transitive model was about small relative
variations of frame sizes in the same frame type. To verify it, we have used 4 video
sequences to gather information about frame size variations. They were encoded using

Hierarchical-B GOP structure with G = 4 and N,y = 32. Summary of data gathered is

Name Resolution | FPS | Frames
KristenAndSara | 1280x720 60 600
FourPeople 1280x720 60 600
ParkScene 1920x1080 | 24 240
Cactus 1920x1080 | 50 500

Table 5.1: Video sequences used
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Video Frame Mean Std Std/Mean | Packet | S(trame)

I 17.7K 0.3K 1.7% 118

Kristen And Sara P 1.92K 0.48K 25% 150 13
B 67, 184 27, 64 40%, 34% 2

I 26.6K 0.3K 1.2% 123

Four People P 3.12K 0.73K 23% 200 16
B 165, 424 65, 136 39%, 32% 3

I 81.7K 5.8K 7.1% 164

Park Scene P 26.1K 2.9K 11% 500 53
B 1.0K, 2.7K | 0.3K, 0.5K | 30%, 18% 3

I 73.0K 2.4K 3.3% 82

Cactus P 22.5K 1.5K 6.7% 900 25

B 1.4K, 3.2K | 04K, 0.6K | 28%, 18% 4

Table 5.2: Frame size statistics

shown in table 5.2.

Thus, if we will choose Sggrame) that will-be bigger than actual amount of packets per
frame, we are estimating PSNR. for the worst-case scenario, so we can guarantee that
actual PSNR will be higher than we estimated.

One of the important part of packaging strategy. is decision of packet size, it will
determine S(frame) for each frame; thus frame loss probabilities. General strategy is to
choose balance between one that will make section size not too big (it determines playback
delay, if number of message symbols per sections remains roughly constant) and one that

will not be too small for header overhead to become noticeable.

5.2 Probabilistic model

To verify accuracy of the probabilistic model, given set of frame loss probabilities we
have simulated loss pattern ({f,qmes) for a sequence of length N, and compared probabil-
ities from estimations to actual values from simulation. Scenarios used are: high and low
loss. Number of simulations for one point is 1F + 6.

GOP structures used in the simulations are: IPP..P with GOP size of 4 and 8 (see fig

5.1); IBB..B G € {4,8} (fig 5.2); and Hierarchical-B N,.; = 32, G € {4,8} (fig 5.3)

||estimated—simulated]| )

To evaluate accuracy of the model we are using relative error metric ( P Py

Results show that relative accuracy is generally less than 0.05 and for low values with high
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Histogram of 0-seq lengths

6
4
T
2
0
1 2
|
Accuracy of model

0.1
&
©

2005
@
e

/ Pl

(a) g=4, pr =0.01,pp = 0.01

Histogram of 0-seq lengths

30
20 simulati
I
10
0 A o
4 8 8 10

12 14 %6 18 20
|
Accuracy of model

0.1

0.05 /
14 16

2 4 6 8 10 12

realive error

(C) g= 4,pr =0.1,pp =0.3

Histogram of 0-seq lengths

6
4
T
2
0 &
1 2
|
Accuracy of model
0.1
8
©
o
L 005
@
4
—

(b) g =8, pr =0.01,pp = 0.01

Histogram of 0-seq lengths

30
20
T
10
0 @ e o o
2 4 8 8 0 12 1 B 18 20
|
Accuracy of model
0.1
B
@
_g 0.05
T x
]

(d) g=8,p; =0.1,pp = 0.3

Figure 5.2: Probabilistic model, IBB..B structure



Histogram of 0-seq lengths Histogram of 0-seq lengths

—&— model —&— model
10 o simulation 1 <o simulation
I @ I @
5 5
@
e @ @ @ e @ @ @ @ @
0 . L . L . . 0 L . . . . .
10 20 30 40 50 60 70 10 20 30 40 50 60 70
| |
Accuracy of model Accuracy of model
0.1 0.1
5 5
© ©
2 006 2005
© ©
o o
° o B «
ot X i o s % *
10 20 30 40 50 80 70 10 20 30 40 50 60 70

(a) g =4, pr = 0.01,pp = 0.05,pp = (b) g =8, pr = 0.01,pp = 0.05,pp =

Histogram of 0-seq lengths Histogram of 0-seq lengths
10 10
—&— model —&— model
<o simulation s simulation
= 4|2 = _|@
5 5
s s ¢
e 5% . . . 0 o 5 ° . ) .
10 20 30 40 50 60 70 10 20 30 40 50 60 70
| |
Accuracy of model Accuracy of model

01 01

0.05

realive error
°
=
&
realive error

X X x b
x XX % % % *oxoX oy x R ox x X X X X x X% ®

10 20 30 40 50 60 70 10 20 30 40 50 60 70
| |

(¢c) g=4,pr =0.1Lpp =pp=0.3 (d)g=8pr=0.1,pp =pp =03
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probability is less than 0.01. Moreover increase in number of simulations makes relative
error converge to 0.

Thus we can make a conclusion that our probabilistic model is accurate.

5.3 Degradation model

Degradation model experiments involve estimation of goodness of the fit for model (see
equation 4.17). We are using 4 video sequences introduced earlier to see how different
is the degradation function for each of those (fig. 5.4). Red points on top and bottom
indicate maximum and minimum PSNR value for that particular [, red cross shows average
value.

Blue line shows fitting curve that had its parameters trained using number of sample
points for each [ of 10 and maximum value for [ of 20, so in total there are 200 points. We

were using non-linear regression to find curve parameters using gradient descent (MAT-
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LAB function fitnlm). In live scenario number of sample points can be reduced to slightly

larger than 4 (because we have 4 parameters) and maximum length can be defined by

point where probability of occurrence is low enough.

30

28

26

Video Amount of motion | Accuracy (R?)
KristenAndSara low 0.99990
FourPeople low 0.99982
Cactus medium 0.99927
ParkScene high 0.99984
Table 5.3: Accuracy of degradation model

Degradation function

Degradation function

(a) ParkScene

Degradation function

(b) FourPeople

Degradation function
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Figure 5.4: Degradation model

Table 5.4 shows how model parameters vary for different videos. This statistics was
obtained from fitted parameter values over 4 videos, and it helped to devise reduced
complexity estimation algorithms by fixing 2 out of 4 parameters and estimating other
two.

We have also calculated heuristic values (7, fy) averaging fitted values over 6 different

video sequences (additional are Johnny 720p and Kimono 1080p) for degradation function
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Parameter | Estimated Value | Standard Deviation
« 15.98 6.04
15} 0.39 0.09
v 0.00621 0.00487
0 16.62 4.29

Table 5.4: Degradation parameters statistics for different videos

Parameter Value
5o 0.39432
Yo 0.0062167

Table 5.5: Degradation model: heuristic values

that can be used for reduced complexity estimation for any video. Lack of necessity to
train a full model for specific video ‘is compensated by reduced accuracy of the resulting
model, however the trade-offtis 'good enough for it 'to be viable strategy in real-time
systems.

Simulation results show.that our choice for a degradation function is valid and accurate,
moreover we have derived heuristi¢ degradation model that can be used instead of training

video-specific one at the cost of-whele system performance.

5.4 Aggregated model

To verify accuracy of aggregated model we have performed multiple experiments to
measure values of estimated PSNR and average of simulated PSNR and comparing optimal
value of w for these two cases.

Figure 5.5 demonstrates how frame loss probabilities and estimated PSNR are chang-
ing depending on w. The video used for that experiment is Cactus, for GOP structure
we were using IPP..P (G = 32), IBB..B (G = 32) and Hierarchical-B with N,.; = 32 and
GOP size values of 4 and 8. For HEVC encoding we were using main profile with QP
equal to 32 which resulted in average PSNR of encoded video of 34.49 dB (it is indicated
with dotted green line in bottom figure for each structure). For LMRC overhead we are
using € = 0.04.

Another set of experiments shows how accurate is our aggregation model. For this
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Figure 5.5: Aggregated model

Video e w(est) | w (sim)
0.08 | 0.543 0.54
0.12 | 0.547 0.54
0.08 | 0.549 0.55
0.12 | 0.551 0.55

Four People

Kristen And Sara

Table 5.6: Estimation vs Simulation

experiment we used frame sizes from HEVC encoded video, used appropriate packetization
schema, simulated LMRC encoding and decoding for packets and depending on which
packets were lost, we marked those frames undecodable. Then we have applied error
concealment strategy and calculated PSNR between original and concealed video. The
goal is to see how estimated and actual PSNR values are changing according to w. We used
two video sequences (Kristen And Sara and Four People) and two values for overhead:
e = 0.08 and € = 0.12 with 0.01 packet loss rate. Simulations were repeated 1E+4 times
and PSNR value was averaged. As you can see from table 5.6, optimal value of w found
using estimated PSNR (proposed model) is located very close to point of maximum actual

PSNR achieved what proves that our model is a viable and accurate.
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Actual pjoss | 0.03 | 0.05 | 0.07
QP=32 36.93 | 36.63 | 36.39
QP=28 39.47 | 39.65 | 39.27
QP=24 40.03 | 40.42 | 39.93

Table 5.7: p; mismatch performance

To evaluate performance of our system in case when value of channel packet loss rate
estimation is not accurate, we performed another set of experiments, where packet loss
rate for simulations was different from one used as input for estimation model. Video
sequence used is Kristen And Sara, e = 0.2, for estimation value of p, is 0.05, in reality
it is larger. Average PSNR values for actual videos with 1E+4 simulations are shown in
Table 5.7

Also we have performed several experiments to see how using fully trained degradation
model versus low-complexity estimation impacts both w.and PSNR estimation. Values of
w found using both methods were the same with threshold of 0.005 for gradient descent
convergence, so we can safely say that performance is the same, but average time dropped
from 1.4sec to 0.2sec in the MATLAB simulation, time of efficient implementation in

C/C++ should be even less.

5.5 Comparison

In this section we are comparing performance of our proposed method to Expanding
Window Fountain codes used instead of LMRC in our system and Randomized Expanding
Reed-Solomon codes [18].

For comparison of LMRC and EWF codes in the context of our system (see fig. 5.6)
we have tested the performance in constrained bandwidth scenario (e = 0.08, pioss =
0.02) using 4 video sequences introduced earlier. Aggregated model determines optimal
weighting factor, channel coding is performed and we calculate average PSNR of degraded
and concealed video over multiple simulations.

Another set of experiments was performed for comparison with RE-RS codes. We are

using 2 scenarios: prss = 0.05 and € = 0.2; piss = 0.1 and ¢ = 0.4. These overhead
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values are claimed to be optimal for RE-RS performance from the paper. All videos are
encoded with 3 different QP values: 32, 28 and 24 and H-B GOP structure with G = 4
and N,.; = 32. Results can be seen in figures 5.7 and 5.8.

While both LMRC and EWF codes have UEP parameter that our proposed system is
optimizing, the goal of LMRC vs RE-RS codes is to compare system end-to-end perfor-
mance. In [18] general streaming scenario is considered, but there is no UEP parameter
to optimize, RE-RS codes have UEP by design. Thus because contribution of the original
paper was optimization of overhead given packet loss rate of the channel, to make a fair
comparison, we are using the same value of the overhead and show that our system is
able to achieve higher performance.

Moreover simulation results show that performance of our proposed method performs
better than RE-RS codes for both constrained (e = 0.2) and large (¢ = 0.4) bandwidth.
Moreover in very constrained bandwidth scenario (¢ = 0.08) LMRC outperforms EWF

codes used with proposed system. The only downside for our method is that transmission
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is performed section by section, so video streaming delay is inevitable. However if it
is allowed by service QoE, our method achieves better video quality and what is more
important - is adaptable to different GOP structures and channel loss rate. Channel
coding performance of EWF codes is lower than LMRC codes, because we have only
changed channel coding module and model for estimation and experiments. However
lower margin between performance difference on EWF and LMRC compared to RE-RS
and LMRC proves that proposed system is flexible and can be extended to support other

channel codes as long as it has a model.
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Chapter 6

Conclusion

In this paper we have proposed a dynamic system for channel coding of video stream
that is sensitive to channel.condition and .video. content and is capable of fine-tuning
channel coding parameters-in response to those changes. Moreover we have introduced
probabilistic and degradation models: Probabilistic model provides a closed-form for-
mulas to calculate estimated frequency of 0-seq occurrences depending on GOP structure
used, when degradation model estimates-impact of those on video quality (PSNR). We
also provided reduced complexity methods of calculating degradation model that can be
used in live streaming environment. These two models in conjunction can estimate video
quality degradation after transmission and it is used in the proposed system for choice of
optimal channel coding parameters.

Experiment results verified accuracy of each model individually as well as of whole
system. Comparison of our proposed method to other methods in literature showed

superiority of our method for the multiple scenarios.
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